由于电子本能会寻求稳定,外层L层或M层的电子会进入弥补内层的空间。在这些电子从外层进入内层的过程中,它们会释放出能量,我们称之为二次X射线光子。而整个过程则称为萤光辐射。每种元素的二次射线都各有特征。而X射线光子萤光辐射产生的能量是由电子转换过程中内层和外层之间的能量差决定的。例如,铁原子Fe的Kα能量大约是6.4千电子伏。特定元素在一定时间内所出来的X射线的数量或者密度,能够用来衡量这种元素的数量。典型的XRF能量分布光谱显示了不同能量时光子密度的分布情况。
不需要每天标定仪器,开机即可检测,大大提高生产效率,并降低了对标准样品的依赖
•多重仪器硬件保护系统,并可通过软件进行全程实时监控, 让仪器工作更稳定、更安全
•特别设计的光路和真空系统提高了轻元素的测试灵敏度3-5倍(Na, Mg, Al, Si, P)
•友好的用户界面,可定制的分析报告,可一键打印测试报告,包括分析结果,样品信息,光谱信息和样品图像
•八种光路准直系统,根据不同样品大小自动切换,亦可测试样品不同位置再求平均值,降低样品不均匀性造成的误差
•高清内置摄像头,清晰地显示仪器所检测的样品部位
1.把试样在能量的作用下蒸发、原子化(转变成气态原子),并使气态原子的外层电子激发至高能态。当从较高的能级跃迁到较低的能级时,原子将释放出多余的能量而发射出特征谱线。这一过程称为蒸发、原子化和激发,需借助于激发光源来实现。2.把原子所产生的辐射进行色散分光,按波长顺序记录在感光板上,就可呈现出有规则的光谱线条,即光谱图。系借助于摄谱仪器的分光和检测装置来实现。以上信息由专业从事便携式合金成分测试光谱仪的英飞思科学于2024/12/27 21:15:13发布
转载请注明来源:http://tazhou.mf1288.com/szyfskx-2829390208.html